Minggu, 28 November 2010

Makalah Statistika (Dispersi)



BAB I
PENDAHULUAN
1.1.Latar Belakang
Pada dasarnya statistika ialah sebuah konsep dalam bereksperimen, menganalisa data yang bertujuan untuk mengefisiensikan waktu, tenaga dan biaya dengan memperoleh hasil yang optimal. Berdasarkan definisinya Statistika merupakan ilmu yang mempelajari bagaimana merencanakan, mengumpulkan, menganalisis, menginterpretasi, dan mempresentasikan data. Sedangkan statistik adalah data, informasi, atau hasil penerapan algoritma statistika pada suatu data. Data sendiri merupakan kumpulan fakta atau angka.

Disadari atau tidak, statistika telah banyak digunakan dalam kehidupan sehari-hari. Bahkan pemerintah menggunakan statistika untuk menilai hasil pembangunan masa lalu dan juga untuk membuat rencana masa datang. Begitu pula Pimpinan mengambil manfaat dari kegunaan statistika untuk melakukan tindakan - tindakan yang perlu dalam menjalankan tugasnya, diantaranya: perlukah mengangkat pegawai baru, sudah waktunyakah untuk membeli mesin baru, bermanfaatkah kalau pegawai di tatar, bagaimanakah kemajuan usaha tahun tahun yang lalu, berapa banyak barang harus dihasilkan setiap tahunnya, perlukah sistem baru dianut dan sistem lama ditinggalkan, dan masih banyak lagi untuk disebutkan. Dunia penelitian atau riset, dimanapun dilakukan bukan saja telah mendapat manfaat yang baik dari statistika tetapi sering harus menggunakannya. Untuk mengetahui apakah cara yang baru ditemukan lebih baik daripada cara lama, melalui riset yang dilakukan dilaboratorium, atau penelitian yang dilakukan di lapangan, perlu diadakan penilaian dengan statistika. Apakah model untuk sesuatu hal dapat kita anut atau tidak, perlu diteliti dengan menggunakan teori statistika. Statistika juga telah cukup mampu untuk menentukan apakah faktor yang satu dipengaruhi atau mempengaruhi faktor lainnya. Kalau ada hubungan antara factor - faktor, berapa kuat adanya hubungan tersebut? Bisakah kita meninggalkan faktor yang satu dan hanya memperhatikan faktor lainnya untuk keperluan studi lebih lanjut.

Uraian singkat tadi, hendaknya cukup dapat memberikan gambaran bahwa statistika sebenarnya diperlukan, minimal penggunaan metodanya. Sesungguhnya statistika sangat diperlukan bukan saja hanya dalam penelitian atau riset, tetapi juga perlu dalam bidang pengetahuan lainnya seperti : teknik, industri, ekonomi, astronomi, biologi, kedokteran, asuransi, pertanian, perniagaan, bisnis, sosiologi, antropologi, pemerintahan, pendidikan, psikologi, meteorologi, geologi, farmasi, ekologi, pengetahuan alam, pengetahuan sosial, dan lain sebagainya.

(misalnya dilakukan sebelum pemilihan umum), serta jajak cepat
(perhitungan cepat hasil pemilu) atau quick count.
C.Macam Statistika
1. Statistik Deskriptif (deduktif)
Statistik Deskriptif (deduktif) yaitu statistik yang tingkat
pengerjaannya mencakup cara-cara menghitung, menyusun atau
mengatur, mengolah, menyajikan, dan menganalisa data agar
dapat memberikan gambaran yang ringkas mengenai suatu
keadaan.
Statistika
deskriptif
hanya
memberikan
informasi
mengenai data yang dipunyai dan sama sekali tidak menarik
inferensia atau kesimpulan apapun tentang gugus induknya yang
lebih besar. Contoh statistika deskriptif yang sering muncul
adalah, tabel, diagram, grafik, dan besaran-besaran lain di
majalah dan koran-koran. Dengan Statistika deskriptif, kumpulan
data yang diperoleh akan tersaji dengan ringkas dan rapi serta
dapat memberikan informasi inti dari kumpulan data yang ada.
Informasi yang dapat diperoleh dari statistika deskriptif ini antara
Penguasaan statistika dan kemampuan menggunakannya merupakan suatu hal yang sangat penting dan sangat bermanfaat bagi sebuah organisasi perusahaan khususnya dalam bidang ekonomi dan bisnis. Karena dengan itu, sebuah organisasi perusahaan bisa mendapatkan informasi yang sangat berguna bagi kemajuan perusahaannya. Informasi tersebut bisa didapatkan dari hasil pengolahan data yang telah disimpulkan kemudian data tersebut bisa kita analisa untuk dijadikan bahan perkiraan dalam mengambil keputusan di masa yang akan datang. Semakin berkembang pesatnya teknologi di zaman sekarang ini, setiap perusahaan  menginginkan agar bisa menggunakan teknologi tersebut dalam membuat sebuah perencanaan yang matang untuk masa depan perusahaannya dari informasi yang telah ada pada perusahaannya. Informasi tersebut terdiri dari data variabel dan juga data numerik yang telah dikumpulkan, dibagi-bagi, kemudian diolah menjadi data ringkasan yang berbentuk variabel maupun angka-angka. Dalam pengolahan data tersebut, setiap perusahaan bisa menggunakan teknologi komputer dari aplikasi yang telah dibuat oleh Perusahaan Microsoft seperti Microsoft Office Excel dan ada juga aplikasi komputer yang membantu untuk pengolahan data seperti aplikasi SPSS. Oleh karena itu, kami mencoba untuk membuat kerangka tulisan ini yang membahas mengenai bagaimana cara penggunaan aplikasi tersebut dalam pengolahan data yang diinginkan dengan pengetahuan yang kami dapatkan dari kuliah Statistika Deskriptif dan juga dari berbagai sumber yang kami peroleh baik dari media internet maupun buku-buku yang membahas tentang penggunaan aplikasi tersebut.

Dalam makalah ini, kami akan membahas materi yang berjudul UKURAN PENYEBARAN DATA (DISPERSI)”. Alasan kami memilih judul ini karena kami ingin menambah wawasan tentang bagaimana data itu tersebar.
1.2.Maksud dan Tujuan
Adapun maksud dari penulisan makalah ini adalah sebagai berikut :
1.      Untuk  mengetahui cara menghitung Ukuran Penyebaran Data.
2.      Untuk Memberikan suatu informasi dalam pengolahan data.
3.      Untuk menambah wawasan kami dalam hal menganalisa sebuah data tidak berkelompok maupun berkelompok dan membuat sebuah laporan dari hasil analisa tersebut.
4.      Mengaplikasikan pengetahuan yang telah didapatkan khususnya pengetahuan tentang Pengolahan Data Statistik.

Adapun tujuan dari penulisan tugas makalah ini, yaitu
  1. Untuk memenuhi salah satu tugas ujian akhir semester (UAS) pada mata kuliah Statistika Deskriptif.
2.      Mengetahui cara mengolah data dengan menggunakan aplikasi Microsoft Excel 2003 dan SPSS 17.0.
3.      Membandingkan hasil pengolahan data statistik baik secara manual maupun otomatis yaitu dengan menggunakan aplikasi komputer.

1.3.Ruang Lingkup Pembahasan
Berdasarkan tugas yang diberikan oleh dosen pengajar kami pada mata kuliah Statistika Deskriptif, maka kami mambatasi pembahasannya sesuai dengan apa yang telah ditugaskan kepada kami. Adapun pembahasan di dalam makalah ini diantaranya:
1.      Pengertian statistika dan distribusi frekuensi data,
2.      Bagaimana cara pengolahan data dikelompokkan secara manual,
3.      Bagaimana sebuah data telah terdispersi,
4.      Bagaimana penggunaan aplikasi Microsoft Excel 2003 dalam pengolahan data yang sudah dikelompokkan dan terdispersi,
5.      Bagaimana penggunaan aplikasi SPSS 17.0 dalam pengolahan data yang sudah dikelompokkan dan terdispersi.

BAB II
PEMBAHASAN
3.1.    Pengertian Statistika dan Distribusi Frekuensi

Statistik, secara istilah memiliki arti data yang berupa angka-angka yang dikumpulkan, ditabulasi, digolong-golongkan sehingga dapat memberikan informasi yang berarti mengenai suatu masalah atau gejala yang terjadi. Dari kumpulan data yang berupa angka-angka  tersebut terdapat ukuran gejala pusat data yang berguna untuk mengetahui lokasi data dibandingkan dengan pusat data.

Statistika merupakan ilmu yang mempelajari statistik yaitu ilmu tentang  pengumpulan, pengolahan, penyajian, dan analisis data serta cara pengambilan kesimpulan secara umum berdasarkan hasil penelitian yang tidak menyeluruh. Ilmu Statistika berguna untuk memberikan informasi atas gejala perubahan yang terjadi dengan menjelaskan hubungan antar variabel yang ada, dan juga untuk mengambil keputusan yang lebih baik dari perencanaan yang dilakukan.

Dalam ilmu statistika terdapat istilah distribusi frekuensi. Distribusi frekuensi adalah penyusunan data ke dalam kelas-kelas tertentu yang sebelumnya data tersebut masih mentah atau belum dikelompokkan kemudian diatur sedemikian rupa sehingga menjadi data yang sudah dikelompokkan yang tertata rapih tanpa menghilangkan informasi yang sudah ada. Distribusi frekuensi terbagi menjadi dua macam yaitu Distribusi Frekuensi Numerical (pengelompokkan data dengan angka-angka) dan  Distribusi Frekuensi Kategorikal (pengelompokkan data berdasarkan ketegori-kategori tertentu). 

3.2       Pengertian Dispersi dan Rumusannya
        
      Dispersi / Ukuran penyebaran Data adalah suatu ukuran baik parameter atau statistika untuk mengetahui seberapa besar penyimpangan data. Melalui ukuran penyebaran dapat diketahui seberapa jauh data-data menyebar dari titik pemusatannya/ suatu kelompok data terhadap pusat data.Ukuran ini kadang – kadang dinamakan pula ukuran variasi yang mnggambarkan berpencarnya data kuantitatif. Beberapa ukuran dispersi yang terkenal dan akan diuraikan disini ialah : Rentang, Rentang natar kuartil, simpangan kuartil/deviasi kuartil, rata-rata simpangan/rata-rata deviasi, simpangan baku atau standar deviasi, variansi dan koefisien variansi, jangkauan kuartil, dan jangkauan persentil.




Rentang (range) :
Rentang (Range) dinotasikan sebagai R, menyatakan ukuran yang menunjukkan selisih nilai antara maksimum dan minimum atau selisih bilangan terbesar dengan bilangan terkecil.

 Rentang merupakan  ukuran penyebaran yang sangat kasar, sebab hanya bersangkutan dengan bilangan terbesar dan terkecil.Semakin kecil nilai R maka kualitas data akan semakin baik, sebaliknya semakin besar nilai R, maka kualitasnya semakin tidak baik.
Rentang cukup baik digunakan untuk mengukur penyebaran data yang simetrik dan nilai datanya menyebar merata. Ukuran ini menjadi tidak relevan jika nilai data maksimum dan minimumnya merupakan nilai ekstrim.
Rentang = Xmax – Xmin,
Xmax adalah data terbesar dan Xmin adalah data terkecil.


Deviasi Rata-rata : penyebaran Berdasarkan harga mutlak simpangan bilangan-bilangan terhadap rata-ratanya. Makin besar simpangan, makin besar nilai deviasi rata-rata.

Varians : penyebaran berdasarkan jumlah kuadrat simpangan bilangan-bilangan terhadap rata-ratanya ; melihat ketidaksamaan sekelompok data

Deviasi Standar : penyebaran berdasarkan akar dari varians dan menunjukkan keragaman kelompok data









3.2.   Pengolahan Data Secara Manual
mengolah data dengan perhitungan manual. Berikut ini akan kami berikan satu contoh data mentah atau data belum dikelompokkan agar bisa kita pahami bersama. Data sekunder ini kami dapatkan dari Buku Statistika  yang berjudul Analisis Statistika karya Purbayu Budi Santosa. Dalam  bukunya Diketahui data mentahnya sebagai berikut:
Contoh berikut adalah data penjualan komputer  per- 10 bulan pada tahun 2010 di toko komputer KOMPISHOP
Tabel II.1 Penjualan Komputer per- 10 bulan
63
68
71
74
76
78
81
84
85
89
66
70
73
75
76
79
82
84
85
90
67
71
73
75
76
79
82
85
86
92
68
71
74
75
77
79
84
85
86
94

Simpangan rata- rata
1) Simpangan rata-rata data tunggal
Simpangan rata-rata data tunggal dirumuskan sebagai berikut.
X = 78,2
SR = 1 /40 ∑|63-78,2| + |66 – 78,2| + |67-78,2| +2 |68 – 78,2| + |70 – 78,2 | + 3 |71 -78,2|
          + 2 | 73 -78,2 | + 2 |74 – 78,2| + 3 |75 -78,2| + 3 |76- 78,2| + |77 – 78,2 | + |78-78,2|
          + 3 |79 – 78,2| + |81 – 78,2| + 2 |82 – 78,2| + 3 84-78,2| + 4 |85- 78,2| + 2 |86-78,2|
          + |89-78,2| + |90-78,2| + |92-78,2| + |94-78,2|

SR = 1/40∑ |-15,2| + |-12,2|  + |-11,2| + 2 |-10,2| + |-8,2| + 3 | -7,2| + 2 |-5,2|+ 2|-4,2| + 3 |
                       -3,2| +3 |-2,2| + |-1,2| + |-0,2| + 3 |0,8| +|2,8| + 2 |3,8| + 3 |5,8| + 4 |6,8| + 2 |
                        7,8| + |10,8| + |11,8| + | 13,8| + |15,8|

SR =1/40  ∑ 15,2 +12,2  + 11,2 + 2 (10,2) + 8,2 + 3 (7,2) + 2 (5,2)+ 2(4,2) + 3(3,2) +
                 3 (2,2) + 1,2 + 0,2 + 3 (0,8) +2,8 + 2 (3,8) + 3 (5,8) + 4 (6,8) + 2(7,8) + 10,8
                 + 11,8 + 13,8 + 15,

SR = 1/40 ∑ 15,2 +12,2  + 11,2 + 20,4 + 8,2 + 21,6 + 10,4+ 8,4 + 9,6 +6,6 + 1,2 + 0,2 +    2,4+2,8 + 7,6 + 17,4 + 27,2 + 15,6 + 10,8 + 11,8 + 13,8 + 15,8
SR = 1/40 x 250,4
SR = 6,26


VARIANS
Keterangan :                                                                                                                          Keterangan :
:  data ke-I, : rata-rata,  s²: ragam sampel                                                          n : ukuran sampel

 = 1/40-1 ∑ (-15,2)  +(-12,2)   +  (-11,2 ) + 2 (-10,2)  +(- 8,2 ) + 3 (-7,2)  + 2 (-5,2) + 2(-4,2)  + 3(-3,2)  + 3 (-2,2)  + (-1,2)  + (-0,2)  + 3 (0,8)  +(2,8)  + 2 (3,8)  + 3 (5,8)  + 4 (6,8)  + 2(7,8)  + (10,8)  + (11,8)  + (13,8)  +( 15,8)

s = 1/39 X 231,04 + 148,84 + 125,44 + 2(104,04) + 67,24 + 3(51,84) + 2(27,04) + 2(17,64) + 3(10,24) + 3(4,84) + 1,44 + 0,04 + 3(0,64) + 7,84 + 2(14,44) + 3(33,64) + 4(46,24) + 2(60,84) + 116,64 + 139,24 + 190,44 + 249,64

S= 1/39 X 231,04 + 148,84 + 125,44 + 208,08 + 67,24 + 155,52 + 54,08 + 35,28 + 30,72 + 14,52 + 1,44 + 0,04 + 1,92 + 7,84 + 28,88 + 100,92 + 184,96 + 121,68 + 116,64 + 139,24 + 190,44 + 249,64

S = 1/39 (2214,4)
S = 56,7794

SIMPANGAN BAKU
 

S = = 7,53

JANGKAUAN KUARTIL
Disebut juga Simpangan kuartil / rentang semi antar kuartil / deviasi kuartil yaitu setengah dari selisih antara kuartil atas (Q3) dengan kuartil bawah (Q1).
Dengan Rumus :
  JK = ½ (Q3 – Q1)
            Keterangan :
            Q1 = Kuartil pertama
                            Q3 = Kuartil ketiga






Qi     = i ( n + 1 ) /4
Q1    = 1 ( 40 + 1 ) /4
        = 1 ( 41) /4
        = 41 / 4
        = 10,25                                                                                                               
X10 + 0,25 ( X11 – X10 )
73 + 0,25  ( 73 – 73 )
73 + 0,25 ( 0 ) = 73

Q3  = 3 (40 + 1) /4
        =  3(41) / 4
        = 30,,75
X30+0,75 (X31-X30)
84 + 0,75 ( 85 – 84 )
84 + 0,75 (1)
84,75
        
        Jk = ½ ( 84,75 – 73 )
             = ½ (11,75)
             = 5,875


3.3.   Pengolahan Data Dengan Microsoft Excel 2007
Langkah-langkah pengolahan data menggunakan microsoft excel adalah sebagai berikut:
1.      Buka lembar kerja baru pada aplikasi microsoft excel 2007
Klik Start → All Program →  Microsoft Office → Microsoft Office 2007
2.       
Masukkan data yang diinginkan















3.      Urutkanlah data tersebut menjadi bentuk kumpulan data yang vertikal pada kolom A

















4.      Pilih menu Data pada menu utama lalu pilih Data Analysis

5.      Kemudian akan muncul Analysis tools pada gambar di bawah, setelah itu pilih Descriptive Statistics, klik OK atau tekan Enter










6.      Ketika box dialog muncul, ketik $A$1:$A$40 pada kotak Input Range, ketik $D$3 pada kotak Output Range. Lalu, pilih Summary Statistics dan klik OK.




7.      Gambar di bawah ini adalah hasil dari pengolahan data dikelompokkan dengan menggunakan aplikasi Microsoft Excel.
















3.4.   Pengolahan Data Dikelompokkan Dengan SPSS 17.0












Berikut ini merupakan langkah-langkah pengolahan data dengan menggunakan aplikasi SPSS 17.0:


1.   Buka lembar kerja baru pada aplikasi SPSS 17.0  (File → New → Data)
     
Seperti pada tampilan berikut :
                
2.   Pilih menu variable View pada pojok kiri bawah tampilan lembar kerja SPSS.

a.   Ketik “Nilai” pada Kolom name
b.   Pilih Numeric pada kolom Type ubah angka pada kolom Width (panjang angka di depan koma)    menjadi 5, dan ubah angka pada kolom Decimals (banyak angka dibelakang koma) menjadi 2.
Hasilnya seperti tampilan berikut :
     






c.   Kembali pada data View.

3.   Untuk mengisi data, ketik menurun kebawah semua data Penjualan komputer di atas pada kolom nilai. Seperti tampilan berikut ini :














4.   Simpanlah data tersebut dengan nama Deskriptif.
5.   Pilihlah menu Analyze, lalu pilih menu Descriptive Statistics, kemudian pilih
Frequencies, yang  akan membuka jendela berikut :



6.      Pilih Variabel nilai dari kotak kiri kemudian klik tanda ►untuk mengisikan variable Nilai ke dalam kotak Variable(s). yang akan muncul tampilan sebagai berikut:
           
7.   Kemudian klik pilihan Statistics dan tentukan
a.   Untuk percentile Values, pilihlah Quartiles dan presentile(s). lalu dalam kotak dikanan presentile(s) ketikan 10 dan klik Add untuk memasukkannya pada kotak dibawahnya. Ulangi untuk angka 90.
b.   Untuk Dispersion, pilihlah semua pilihan yang ada.
c.   Untuk Central Tendency, pilihlah Mean dan Median.
d.   Untuk Distribution, pilihlah Skewness dan Kurtosis.
               
e.   Pilih chart untuk memilih tipe chart, pilih Histogram.



 f.   Klik continue untuk melanjutkan proses berikutnya. Setelah itu akan muncul tampilan sebagai berikut:           
8.   Pada tampilan jendela outputnya akan muncul  tampilan analisis datanya sebagai berikut :
a.   Tampilan output

























BAB IV
PENUTUP
            Demikianlah penulisan makalah ini yang telah kami buat. Dari hasil pembahasan yang telah kami bahas pada makalah ini maka dapat kita ambil kesimpulan dan rekomendasi.  

4.1.      Kesimpulan
Dispersi data adalah ukuran penyebaran suatu kelompok data terhadap pusat data.
Memiliki Jenis ukuran :
Dispersi Mutlak : Jangkauan (range), Simpangan rata-rata (mean deviation), Variansi (variance), Standar deviasi (standard deviation), Simpangan kuartil (quartile deviation)
Dispersi Relatif  : Koefisien variasi (coeficient of variation).
Pentingnya kita mempelajari dispersi data didasarkan pada pertimbangan.
Pertama, pusat data seperti rata-rata hitung, median dan modus hanya memberi informasi yang sangat terbatas, sehingga tanpa disandingkan dengan dispersi data kurang bermanfaat dalam analisis data.
Kedua, dispersi data sangat penting untuk membandingkan penyebaran dua distribusi atau lebih.

4.2.      Saran
Dalam kehidupan sehari – hari bahwa penggunaan aplikasi microsoft Excel dan juga SPSS dapat memberikan manfaat yang besar bagi suatu organisasi perusahaan maupun pendidikan yaitu waktu dapat menjadi lebih efisien ketika melakukan pengolahan data mentah menjadi data berkelompok yang nantinya menjadi informasi bagi organisasi tersebut dalam menentukan keputusan yang lebih baik di masa yang akan datang. Sebaliknya, jika sebuah organisasi perusahaan maupun pendidikan masih menerapkan penghitungan manual dalam pengolahan data statistik, maka waktu yang ada menjadi kurang efisien dan pengerjaan dalam mengolah data menjadi kurang efektif.

Dan juga bila dibandingkan hasil dari pengolahan data secara manual dengan hasil pengolahan data secara otomatis yaitu dengan aplikasi microsoft excel dan SPSS, akan memperoleh hasil yang berbeda dari keduanya. Tingkat keakuratan pengolahan data secara otomatis lebih mendekati kebenaran daripada pengolahan data secara manual.   



Daftar Pustaka

Agus, Irianto. 2004. Statistik Konsep Dasar Dan Aplikasinya. Jakarta : Prenada Media.

Budi Santosa, Purbayu dan ashari. 2006. Analisis Statistik dengan menggunakan Ms. Excel & SPSS. Yogyakarta : ANDI.

Kuswadi dan Erna Mutiara. 2004. Statistik berbasis komputer untuk orng-orang Non-Statistik. Jakarta: PT. Elex media komputindo.

Santoso, Singgih. 2001. Aplikasi Excel dalam Statistik Bisnis. Jakarta: PT. Elex media komputindo.

Singgih Santoso.  2000. Buku Latihan  SPSS Statistik Parametrik. Jakarta  : PT. Elex Media Komputindo.

Wirodikromo, Sartono. 2006. Matematika IPA kelas XI. Jakarta : Erlangga.
Sudjana. 2001. Metoda Statistika Deskriptif. Bandung : Tarsito.



BAB I
PENDAHULUAN
1.1.Latar Belakang
Pada dasarnya statistika ialah sebuah konsep dalam bereksperimen, menganalisa data yang bertujuan untuk mengefisiensikan waktu, tenaga dan biaya dengan memperoleh hasil yang optimal. Berdasarkan definisinya Statistika merupakan ilmu yang mempelajari bagaimana merencanakan, mengumpulkan, menganalisis, menginterpretasi, dan mempresentasikan data. Sedangkan statistik adalah data, informasi, atau hasil penerapan algoritma statistika pada suatu data. Data sendiri merupakan kumpulan fakta atau angka.

Disadari atau tidak, statistika telah banyak digunakan dalam kehidupan sehari-hari. Bahkan pemerintah menggunakan statistika untuk menilai hasil pembangunan masa lalu dan juga untuk membuat rencana masa datang. Begitu pula Pimpinan mengambil manfaat dari kegunaan statistika untuk melakukan tindakan - tindakan yang perlu dalam menjalankan tugasnya, diantaranya: perlukah mengangkat pegawai baru, sudah waktunyakah untuk membeli mesin baru, bermanfaatkah kalau pegawai di tatar, bagaimanakah kemajuan usaha tahun tahun yang lalu, berapa banyak barang harus dihasilkan setiap tahunnya, perlukah sistem baru dianut dan sistem lama ditinggalkan, dan masih banyak lagi untuk disebutkan. Dunia penelitian atau riset, dimanapun dilakukan bukan saja telah mendapat manfaat yang baik dari statistika tetapi sering harus menggunakannya. Untuk mengetahui apakah cara yang baru ditemukan lebih baik daripada cara lama, melalui riset yang dilakukan dilaboratorium, atau penelitian yang dilakukan di lapangan, perlu diadakan penilaian dengan statistika. Apakah model untuk sesuatu hal dapat kita anut atau tidak, perlu diteliti dengan menggunakan teori statistika. Statistika juga telah cukup mampu untuk menentukan apakah faktor yang satu dipengaruhi atau mempengaruhi faktor lainnya. Kalau ada hubungan antara factor - faktor, berapa kuat adanya hubungan tersebut? Bisakah kita meninggalkan faktor yang satu dan hanya memperhatikan faktor lainnya untuk keperluan studi lebih lanjut.

Uraian singkat tadi, hendaknya cukup dapat memberikan gambaran bahwa statistika sebenarnya diperlukan, minimal penggunaan metodanya. Sesungguhnya statistika sangat diperlukan bukan saja hanya dalam penelitian atau riset, tetapi juga perlu dalam bidang pengetahuan lainnya seperti : teknik, industri, ekonomi, astronomi, biologi, kedokteran, asuransi, pertanian, perniagaan, bisnis, sosiologi, antropologi, pemerintahan, pendidikan, psikologi, meteorologi, geologi, farmasi, ekologi, pengetahuan alam, pengetahuan sosial, dan lain sebagainya.

(misalnya dilakukan sebelum pemilihan umum), serta jajak cepat
(perhitungan cepat hasil pemilu) atau quick count.
C.Macam Statistika
1. Statistik Deskriptif (deduktif)
Statistik Deskriptif (deduktif) yaitu statistik yang tingkat
pengerjaannya mencakup cara-cara menghitung, menyusun atau
mengatur, mengolah, menyajikan, dan menganalisa data agar
dapat memberikan gambaran yang ringkas mengenai suatu
keadaan.
Statistika
deskriptif
hanya
memberikan
informasi
mengenai data yang dipunyai dan sama sekali tidak menarik
inferensia atau kesimpulan apapun tentang gugus induknya yang
lebih besar. Contoh statistika deskriptif yang sering muncul
adalah, tabel, diagram, grafik, dan besaran-besaran lain di
majalah dan koran-koran. Dengan Statistika deskriptif, kumpulan
data yang diperoleh akan tersaji dengan ringkas dan rapi serta
dapat memberikan informasi inti dari kumpulan data yang ada.
Informasi yang dapat diperoleh dari statistika deskriptif ini antara
Penguasaan statistika dan kemampuan menggunakannya merupakan suatu hal yang sangat penting dan sangat bermanfaat bagi sebuah organisasi perusahaan khususnya dalam bidang ekonomi dan bisnis. Karena dengan itu, sebuah organisasi perusahaan bisa mendapatkan informasi yang sangat berguna bagi kemajuan perusahaannya. Informasi tersebut bisa didapatkan dari hasil pengolahan data yang telah disimpulkan kemudian data tersebut bisa kita analisa untuk dijadikan bahan perkiraan dalam mengambil keputusan di masa yang akan datang. Semakin berkembang pesatnya teknologi di zaman sekarang ini, setiap perusahaan  menginginkan agar bisa menggunakan teknologi tersebut dalam membuat sebuah perencanaan yang matang untuk masa depan perusahaannya dari informasi yang telah ada pada perusahaannya. Informasi tersebut terdiri dari data variabel dan juga data numerik yang telah dikumpulkan, dibagi-bagi, kemudian diolah menjadi data ringkasan yang berbentuk variabel maupun angka-angka. Dalam pengolahan data tersebut, setiap perusahaan bisa menggunakan teknologi komputer dari aplikasi yang telah dibuat oleh Perusahaan Microsoft seperti Microsoft Office Excel dan ada juga aplikasi komputer yang membantu untuk pengolahan data seperti aplikasi SPSS. Oleh karena itu, kami mencoba untuk membuat kerangka tulisan ini yang membahas mengenai bagaimana cara penggunaan aplikasi tersebut dalam pengolahan data yang diinginkan dengan pengetahuan yang kami dapatkan dari kuliah Statistika Deskriptif dan juga dari berbagai sumber yang kami peroleh baik dari media internet maupun buku-buku yang membahas tentang penggunaan aplikasi tersebut.

Dalam makalah ini, kami akan membahas materi yang berjudul UKURAN PENYEBARAN DATA (DISPERSI)”. Alasan kami memilih judul ini karena kami ingin menambah wawasan tentang bagaimana data itu tersebar.
1.2.Maksud dan Tujuan
Adapun maksud dari penulisan makalah ini adalah sebagai berikut :
1.      Untuk  mengetahui cara menghitung Ukuran Penyebaran Data.
2.      Untuk Memberikan suatu informasi dalam pengolahan data.
3.      Untuk menambah wawasan kami dalam hal menganalisa sebuah data tidak berkelompok maupun berkelompok dan membuat sebuah laporan dari hasil analisa tersebut.
4.      Mengaplikasikan pengetahuan yang telah didapatkan khususnya pengetahuan tentang Pengolahan Data Statistik.

Adapun tujuan dari penulisan tugas makalah ini, yaitu
  1. Untuk memenuhi salah satu tugas ujian akhir semester (UAS) pada mata kuliah Statistika Deskriptif.
2.      Mengetahui cara mengolah data dengan menggunakan aplikasi Microsoft Excel 2003 dan SPSS 17.0.
3.      Membandingkan hasil pengolahan data statistik baik secara manual maupun otomatis yaitu dengan menggunakan aplikasi komputer.

1.3.Ruang Lingkup Pembahasan
Berdasarkan tugas yang diberikan oleh dosen pengajar kami pada mata kuliah Statistika Deskriptif, maka kami mambatasi pembahasannya sesuai dengan apa yang telah ditugaskan kepada kami. Adapun pembahasan di dalam makalah ini diantaranya:
1.      Pengertian statistika dan distribusi frekuensi data,
2.      Bagaimana cara pengolahan data dikelompokkan secara manual,
3.      Bagaimana sebuah data telah terdispersi,
4.      Bagaimana penggunaan aplikasi Microsoft Excel 2003 dalam pengolahan data yang sudah dikelompokkan dan terdispersi,
5.      Bagaimana penggunaan aplikasi SPSS 17.0 dalam pengolahan data yang sudah dikelompokkan dan terdispersi.

BAB II
PEMBAHASAN
3.1.    Pengertian Statistika dan Distribusi Frekuensi

Statistik, secara istilah memiliki arti data yang berupa angka-angka yang dikumpulkan, ditabulasi, digolong-golongkan sehingga dapat memberikan informasi yang berarti mengenai suatu masalah atau gejala yang terjadi. Dari kumpulan data yang berupa angka-angka  tersebut terdapat ukuran gejala pusat data yang berguna untuk mengetahui lokasi data dibandingkan dengan pusat data.

Statistika merupakan ilmu yang mempelajari statistik yaitu ilmu tentang  pengumpulan, pengolahan, penyajian, dan analisis data serta cara pengambilan kesimpulan secara umum berdasarkan hasil penelitian yang tidak menyeluruh. Ilmu Statistika berguna untuk memberikan informasi atas gejala perubahan yang terjadi dengan menjelaskan hubungan antar variabel yang ada, dan juga untuk mengambil keputusan yang lebih baik dari perencanaan yang dilakukan.

Dalam ilmu statistika terdapat istilah distribusi frekuensi. Distribusi frekuensi adalah penyusunan data ke dalam kelas-kelas tertentu yang sebelumnya data tersebut masih mentah atau belum dikelompokkan kemudian diatur sedemikian rupa sehingga menjadi data yang sudah dikelompokkan yang tertata rapih tanpa menghilangkan informasi yang sudah ada. Distribusi frekuensi terbagi menjadi dua macam yaitu Distribusi Frekuensi Numerical (pengelompokkan data dengan angka-angka) dan  Distribusi Frekuensi Kategorikal (pengelompokkan data berdasarkan ketegori-kategori tertentu). 

3.2       Pengertian Dispersi dan Rumusannya
        
      Dispersi / Ukuran penyebaran Data adalah suatu ukuran baik parameter atau statistika untuk mengetahui seberapa besar penyimpangan data. Melalui ukuran penyebaran dapat diketahui seberapa jauh data-data menyebar dari titik pemusatannya/ suatu kelompok data terhadap pusat data.Ukuran ini kadang – kadang dinamakan pula ukuran variasi yang mnggambarkan berpencarnya data kuantitatif. Beberapa ukuran dispersi yang terkenal dan akan diuraikan disini ialah : Rentang, Rentang natar kuartil, simpangan kuartil/deviasi kuartil, rata-rata simpangan/rata-rata deviasi, simpangan baku atau standar deviasi, variansi dan koefisien variansi, jangkauan kuartil, dan jangkauan persentil.




Rentang (range) :
Rentang (Range) dinotasikan sebagai R, menyatakan ukuran yang menunjukkan selisih nilai antara maksimum dan minimum atau selisih bilangan terbesar dengan bilangan terkecil.

 Rentang merupakan  ukuran penyebaran yang sangat kasar, sebab hanya bersangkutan dengan bilangan terbesar dan terkecil.Semakin kecil nilai R maka kualitas data akan semakin baik, sebaliknya semakin besar nilai R, maka kualitasnya semakin tidak baik.
Rentang cukup baik digunakan untuk mengukur penyebaran data yang simetrik dan nilai datanya menyebar merata. Ukuran ini menjadi tidak relevan jika nilai data maksimum dan minimumnya merupakan nilai ekstrim.
Rentang = Xmax – Xmin,
Xmax adalah data terbesar dan Xmin adalah data terkecil.


Deviasi Rata-rata : penyebaran Berdasarkan harga mutlak simpangan bilangan-bilangan terhadap rata-ratanya. Makin besar simpangan, makin besar nilai deviasi rata-rata.

Varians : penyebaran berdasarkan jumlah kuadrat simpangan bilangan-bilangan terhadap rata-ratanya ; melihat ketidaksamaan sekelompok data

Deviasi Standar : penyebaran berdasarkan akar dari varians dan menunjukkan keragaman kelompok data









3.2.   Pengolahan Data Secara Manual
mengolah data dengan perhitungan manual. Berikut ini akan kami berikan satu contoh data mentah atau data belum dikelompokkan agar bisa kita pahami bersama. Data sekunder ini kami dapatkan dari Buku Statistika  yang berjudul Analisis Statistika karya Purbayu Budi Santosa. Dalam  bukunya Diketahui data mentahnya sebagai berikut:
Contoh berikut adalah data penjualan komputer  per- 10 bulan pada tahun 2010 di toko komputer KOMPISHOP
Tabel II.1 Penjualan Komputer per- 10 bulan
63
68
71
74
76
78
81
84
85
89
66
70
73
75
76
79
82
84
85
90
67
71
73
75
76
79
82
85
86
92
68
71
74
75
77
79
84
85
86
94

Simpangan rata- rata
1) Simpangan rata-rata data tunggal
Simpangan rata-rata data tunggal dirumuskan sebagai berikut.
X = 78,2
SR = 1 /40 ∑|63-78,2| + |66 – 78,2| + |67-78,2| +2 |68 – 78,2| + |70 – 78,2 | + 3 |71 -78,2|
          + 2 | 73 -78,2 | + 2 |74 – 78,2| + 3 |75 -78,2| + 3 |76- 78,2| + |77 – 78,2 | + |78-78,2|
          + 3 |79 – 78,2| + |81 – 78,2| + 2 |82 – 78,2| + 3 84-78,2| + 4 |85- 78,2| + 2 |86-78,2|
          + |89-78,2| + |90-78,2| + |92-78,2| + |94-78,2|

SR = 1/40∑ |-15,2| + |-12,2|  + |-11,2| + 2 |-10,2| + |-8,2| + 3 | -7,2| + 2 |-5,2|+ 2|-4,2| + 3 |
                       -3,2| +3 |-2,2| + |-1,2| + |-0,2| + 3 |0,8| +|2,8| + 2 |3,8| + 3 |5,8| + 4 |6,8| + 2 |
                        7,8| + |10,8| + |11,8| + | 13,8| + |15,8|

SR =1/40  ∑ 15,2 +12,2  + 11,2 + 2 (10,2) + 8,2 + 3 (7,2) + 2 (5,2)+ 2(4,2) + 3(3,2) +
                 3 (2,2) + 1,2 + 0,2 + 3 (0,8) +2,8 + 2 (3,8) + 3 (5,8) + 4 (6,8) + 2(7,8) + 10,8
                 + 11,8 + 13,8 + 15,

SR = 1/40 ∑ 15,2 +12,2  + 11,2 + 20,4 + 8,2 + 21,6 + 10,4+ 8,4 + 9,6 +6,6 + 1,2 + 0,2 +    2,4+2,8 + 7,6 + 17,4 + 27,2 + 15,6 + 10,8 + 11,8 + 13,8 + 15,8
SR = 1/40 x 250,4
SR = 6,26


VARIANS
Keterangan :                                                                                                                          Keterangan :
:  data ke-I, : rata-rata,  s²: ragam sampel                                                          n : ukuran sampel

 = 1/40-1 ∑ (-15,2)  +(-12,2)   +  (-11,2 ) + 2 (-10,2)  +(- 8,2 ) + 3 (-7,2)  + 2 (-5,2) + 2(-4,2)  + 3(-3,2)  + 3 (-2,2)  + (-1,2)  + (-0,2)  + 3 (0,8)  +(2,8)  + 2 (3,8)  + 3 (5,8)  + 4 (6,8)  + 2(7,8)  + (10,8)  + (11,8)  + (13,8)  +( 15,8)

s = 1/39 X 231,04 + 148,84 + 125,44 + 2(104,04) + 67,24 + 3(51,84) + 2(27,04) + 2(17,64) + 3(10,24) + 3(4,84) + 1,44 + 0,04 + 3(0,64) + 7,84 + 2(14,44) + 3(33,64) + 4(46,24) + 2(60,84) + 116,64 + 139,24 + 190,44 + 249,64

S= 1/39 X 231,04 + 148,84 + 125,44 + 208,08 + 67,24 + 155,52 + 54,08 + 35,28 + 30,72 + 14,52 + 1,44 + 0,04 + 1,92 + 7,84 + 28,88 + 100,92 + 184,96 + 121,68 + 116,64 + 139,24 + 190,44 + 249,64

S = 1/39 (2214,4)
S = 56,7794

SIMPANGAN BAKU
 

S = = 7,53

JANGKAUAN KUARTIL
Disebut juga Simpangan kuartil / rentang semi antar kuartil / deviasi kuartil yaitu setengah dari selisih antara kuartil atas (Q3) dengan kuartil bawah (Q1).
Dengan Rumus :
  JK = ½ (Q3 – Q1)
            Keterangan :
            Q1 = Kuartil pertama
                            Q3 = Kuartil ketiga






Qi     = i ( n + 1 ) /4
Q1    = 1 ( 40 + 1 ) /4
        = 1 ( 41) /4
        = 41 / 4
        = 10,25                                                                                                               
X10 + 0,25 ( X11 – X10 )
73 + 0,25  ( 73 – 73 )
73 + 0,25 ( 0 ) = 73

Q3  = 3 (40 + 1) /4
        =  3(41) / 4
        = 30,,75
X30+0,75 (X31-X30)
84 + 0,75 ( 85 – 84 )
84 + 0,75 (1)
84,75
        
        Jk = ½ ( 84,75 – 73 )
             = ½ (11,75)
             = 5,875


3.3.   Pengolahan Data Dengan Microsoft Excel 2007
Langkah-langkah pengolahan data menggunakan microsoft excel adalah sebagai berikut:
1.      Buka lembar kerja baru pada aplikasi microsoft excel 2007
Klik Start → All Program →  Microsoft Office → Microsoft Office 2007
2.       
Masukkan data yang diinginkan















3.      Urutkanlah data tersebut menjadi bentuk kumpulan data yang vertikal pada kolom A

















4.      Pilih menu Data pada menu utama lalu pilih Data Analysis

5.      Kemudian akan muncul Analysis tools pada gambar di bawah, setelah itu pilih Descriptive Statistics, klik OK atau tekan Enter










6.      Ketika box dialog muncul, ketik $A$1:$A$40 pada kotak Input Range, ketik $D$3 pada kotak Output Range. Lalu, pilih Summary Statistics dan klik OK.




7.      Gambar di bawah ini adalah hasil dari pengolahan data dikelompokkan dengan menggunakan aplikasi Microsoft Excel.
















3.4.   Pengolahan Data Dikelompokkan Dengan SPSS 17.0












Berikut ini merupakan langkah-langkah pengolahan data dengan menggunakan aplikasi SPSS 17.0:


1.   Buka lembar kerja baru pada aplikasi SPSS 17.0  (File → New → Data)
     
Seperti pada tampilan berikut :
                
2.   Pilih menu variable View pada pojok kiri bawah tampilan lembar kerja SPSS.

a.   Ketik “Nilai” pada Kolom name
b.   Pilih Numeric pada kolom Type ubah angka pada kolom Width (panjang angka di depan koma)    menjadi 5, dan ubah angka pada kolom Decimals (banyak angka dibelakang koma) menjadi 2.
Hasilnya seperti tampilan berikut :
     






c.   Kembali pada data View.

3.   Untuk mengisi data, ketik menurun kebawah semua data Penjualan komputer di atas pada kolom nilai. Seperti tampilan berikut ini :














4.   Simpanlah data tersebut dengan nama Deskriptif.
5.   Pilihlah menu Analyze, lalu pilih menu Descriptive Statistics, kemudian pilih
Frequencies, yang  akan membuka jendela berikut :



6.      Pilih Variabel nilai dari kotak kiri kemudian klik tanda ►untuk mengisikan variable Nilai ke dalam kotak Variable(s). yang akan muncul tampilan sebagai berikut:
           
7.   Kemudian klik pilihan Statistics dan tentukan
a.   Untuk percentile Values, pilihlah Quartiles dan presentile(s). lalu dalam kotak dikanan presentile(s) ketikan 10 dan klik Add untuk memasukkannya pada kotak dibawahnya. Ulangi untuk angka 90.
b.   Untuk Dispersion, pilihlah semua pilihan yang ada.
c.   Untuk Central Tendency, pilihlah Mean dan Median.
d.   Untuk Distribution, pilihlah Skewness dan Kurtosis.
               
e.   Pilih chart untuk memilih tipe chart, pilih Histogram.



 f.   Klik continue untuk melanjutkan proses berikutnya. Setelah itu akan muncul tampilan sebagai berikut:           
8.   Pada tampilan jendela outputnya akan muncul  tampilan analisis datanya sebagai berikut :
a.   Tampilan output

























BAB IV
PENUTUP
            Demikianlah penulisan makalah ini yang telah kami buat. Dari hasil pembahasan yang telah kami bahas pada makalah ini maka dapat kita ambil kesimpulan dan rekomendasi.  

4.1.      Kesimpulan
Dispersi data adalah ukuran penyebaran suatu kelompok data terhadap pusat data.
Memiliki Jenis ukuran :
Dispersi Mutlak : Jangkauan (range), Simpangan rata-rata (mean deviation), Variansi (variance), Standar deviasi (standard deviation), Simpangan kuartil (quartile deviation)
Dispersi Relatif  : Koefisien variasi (coeficient of variation).
Pentingnya kita mempelajari dispersi data didasarkan pada pertimbangan.
Pertama, pusat data seperti rata-rata hitung, median dan modus hanya memberi informasi yang sangat terbatas, sehingga tanpa disandingkan dengan dispersi data kurang bermanfaat dalam analisis data.
Kedua, dispersi data sangat penting untuk membandingkan penyebaran dua distribusi atau lebih.

4.2.      Saran
Dalam kehidupan sehari – hari bahwa penggunaan aplikasi microsoft Excel dan juga SPSS dapat memberikan manfaat yang besar bagi suatu organisasi perusahaan maupun pendidikan yaitu waktu dapat menjadi lebih efisien ketika melakukan pengolahan data mentah menjadi data berkelompok yang nantinya menjadi informasi bagi organisasi tersebut dalam menentukan keputusan yang lebih baik di masa yang akan datang. Sebaliknya, jika sebuah organisasi perusahaan maupun pendidikan masih menerapkan penghitungan manual dalam pengolahan data statistik, maka waktu yang ada menjadi kurang efisien dan pengerjaan dalam mengolah data menjadi kurang efektif.

Dan juga bila dibandingkan hasil dari pengolahan data secara manual dengan hasil pengolahan data secara otomatis yaitu dengan aplikasi microsoft excel dan SPSS, akan memperoleh hasil yang berbeda dari keduanya. Tingkat keakuratan pengolahan data secara otomatis lebih mendekati kebenaran daripada pengolahan data secara manual.   



Daftar Pustaka

Agus, Irianto. 2004. Statistik Konsep Dasar Dan Aplikasinya. Jakarta : Prenada Media.

Budi Santosa, Purbayu dan ashari. 2006. Analisis Statistik dengan menggunakan Ms. Excel & SPSS. Yogyakarta : ANDI.

Kuswadi dan Erna Mutiara. 2004. Statistik berbasis komputer untuk orng-orang Non-Statistik. Jakarta: PT. Elex media komputindo.

Santoso, Singgih. 2001. Aplikasi Excel dalam Statistik Bisnis. Jakarta: PT. Elex media komputindo.

Singgih Santoso.  2000. Buku Latihan  SPSS Statistik Parametrik. Jakarta  : PT. Elex Media Komputindo.

Wirodikromo, Sartono. 2006. Matematika IPA kelas XI. Jakarta : Erlangga.
Sudjana. 2001. Metoda Statistika Deskriptif. Bandung : Tarsito.


Tidak ada komentar:

Poskan Komentar